
Building and Flashing a Custom firmware.bin for Ringo/Makerphone 
(Version 1.0 - 19 Sep 2020) 

 
1. Obtain the latest Ringo firmware from github and arrange into the appropriate directory structure (for 

this example, we'll use release 1.0.5): 
 

a. Browse to https://github.com/CircuitMess/CircuitMess-Ringo-firmware/tree/v1.0.5 and 
Download ZIP. The file will be named CircuitMess-Ringo-firmware-1.0.5.zip. 

 
b. Browse to https://github.com/CircuitMess/CircuitMess-Ringo/tree/v1.0.5 and Download ZIP. 

The file will be named CircuitMess-Ringo-1.0.5.zip. 
 

c. Make a new empty directory somewhere to hold the firmware directory structure; for purposes 
of this document, I'll be a bit disorganized and just put it on my desktop and name it 
CustomRingoFirmware. Wherever you put this directory, plan to leave it there so that VS 
Code can find it in the future. 

 
d. Open CircuitMess-Ringo-firmware-1.0.5.zip, and within that open directory CircuitMess-

Ringo-firmware-1.0.5. You will see a number of files and two directories, lib and src. Select 
and copy all those files and directories, and paste them into your empty 
CustomRingoFirmware directory. 

 
e. Open the CustomRingoFirmware directory, and then the lib directory, and then the 

MAKERphone directory. You will see that it is empty, so let’s fill it... Open CircuitMess-Ringo-
1.0.5.zip, and within that open directory CircuitMess-Ringo-1.0.5.You will see a number of 
files and several directories. Select and copy all those files and directories, and paste them into 
that empty CustomRingoFirmware\lib\MAKERphone directory. 

 
f. You may now delete both .zip files, as we have copied all the files into the appropriate directory 

structure for building the firmware. 
 

g. OPTIONAL: Make any custom modifications you might want to the various firmware and library 

source files. I might suggest finding the line: uint16_t firmware_version = 105; in 
the source file CustomRingoFirmware\lib\MAKERphone\src\MAKERphone.h and change 
the version number from 105 to 9905. This way you will be able to see that you are running 
custom firmware once you have flashed it to your Ringo. Use Notepad, Wordpad, or your 
favorite text editor to make the change(s). 

 
2. Obtain Microsoft VS Code and launch it: 
 

a. Download the 32-bit portable .zip file from here: https://code.visualstudio.com/Download. Unzip 
it putting the unzipped directory anywhere you like; in my case, I put it on my desktop. Since I 
downloaded version 1.49.0, the unzipped directory is named VSCode-win32-ia32-1.49.0. Run 
VS Code by opening that directory and launching the application Code.exe. The dark IDE 
window should be displayed. 

 



3. Install the PlatformIO extension to VS Code: 
 

a. From the VS Code menu, open View/Extensions. In the search box, type PlatformIO. Under 
PlatformIO IDE, click on Install. It will take quite some time for this to complete; watch in the 
lower right of the dark window for various progress bars. When installation is complete, it will 
say Please restart VSCode. 

 
b. Close the dark VS Code IDE window and launch Code.exe again. Wait until the PIO Home tab 

opens (orange bug looking at you). 
 
4. Create a new project in PlatformIO incorporating the code in your CustomRingoFirmware directory: 
 

a. Click on + New Project under Quck Access. 
 

b. Give it a Name: CustomRingoFirmware (must be same as the name of the directory). 
 

c. For Board: type in WEMOS LOLIN32. 
 

d. Framework: should autofill with Arduino. 
 

e. For Location:, uncheck the box Use default location. 
 

f. Under Choose a location where we will create a project folder, navigate to the directory 
containing the directory CustomRingoFirmware (in my case, this was my Desktop). Do not 
navigate all the way into the directory CustomRingoFirmware. 

 
g. Click Finish and wait until it finishes creating the project. After it has finished, you should see 

Desktop\CustomRingoFirmware (in my case) listed under Recent Projects. 
 
5. Build firmware.bin: 
 

a. Close the VS Code window and launch it again. 
 
b. Wait until the PI Home tab opens (orange bug looking at you). 

 
c. From the VS Code menu, open Terminal/Run Task. 

 
d. Select PlatformIO, and then PlatformIO: Clean CustomRingoFirmware. This clears any 

prior build out of the directory structure. Wait until it says Done cleaning in the terminal 
window at the bottom of the dark VS Code IDE window. Ignore the non-zero number listed to 
the right of Problems; those problems don’t apply to this project. 

 
e. Again from the VS Code menu, open Terminal/Run Task. 

 
f. Select PlatformIO, and then PlatformIO: Build CustomRingoFirmware. Compiling will 

commence. This may take a while. Watch the terminal window at the bottom of the dark VS 



Code IDE window to see when the build is complete. Hopefully it will say SUCCESS at the 
end. 

 
g. Outside of VS Code, navigate in Windows to directory 

CustomRingoFirmware\.pio\build\lolin32. There you will see the newly generated 
firmware.bin file. This is the end of the process to build firmware.bin. You have done it! 

 
h. Repeat steps 5e thru 5g each time you modify any firmware file(s); Repeat steps 5c thru 5g to 

re-compile all files, even those not dependent on ones you’ve modified. 
 

i. Instructions to flash firmware.bin will follow. If you are already familiar with flashing 
firmware.bin using esptool.py, you need go no further in this document. 

 
6. Install Python 3.8 if some version of Python is not already installed on your Windows system (if you 

already have Python installed, you only need to perform step 6c): 
 

a. Get the Python 3.8 install file from python.org: https://www.python.org/downloads/release/python-385/. 
Choose your poison, 32-bit or 64-bit installer. 

 
b. Install it like installing anything else in Windows but be sure to run the install file as 

administrator. Choose Customize installation, make sure all check boxes are checked under 
Optional features, make sure all check boxes except the last 2 are checked under Advanced 
options and make the install directory be C:\Program Files\Python38-32. Continue with 
installation and finish it. 

 
c. Run a DOS box (Command Prompt) as administrator. In this elevated DOS box, enter the 

command pip install pyserial. That should install successfully (though it may complain about 
an old version of pip). Or it may tell you that pyserial is already installed (Requirement already 
satisfied). 

 
7. Manually flash firmware.bin to the Ringo: 
 

a. Make a new empty directory somewhere to contain the files necessary to flash firmware.bin to 
the Ringo. I chose to create this on my Desktop and named the directory 
FlashCustomRingoFirmware. 

 
b. Copy the firmware.bin and partitions.bin files from CustomRingoFirmware\.pio\build\lolin32 to 

your directory FlashCustomRingoFirmware. 
 

c. Browse to this page: https://github.com/espressif/arduino-esp32/releases/tag/1.0.4 and 
download the file esp32-1.0.4.zip. Open that zip file and then the esp32-1.0.4\tools\sdk\bin 
directory and copy the file bootloader_dio_80m.bin to your FlashCustomRingoFirmware 
directory. From that same zip file, go to the esp32-1.0.4\tools\partitions directory and copy 
the file boot_app0.bin to your FlashCustomRingoFirmware directory. 

 
d. Copy the file C:\Users\<your-user-name>\.platformio\packages\tool-esptoolpy\esptool.py 

to your FlashCustomRingoFirmware directory. 



 
e. Create a new text file in your FlashCustomRingoFirmware directory named flash.txt. Open 

the file with Notepad or your favorite text editor and add the following two lines (note that due 
to variations in the way your Python is installed/configured, you may need to change the py at 
the beginning of the first line to one of python, python3, or python2; or you may need to 
remove the py completely; use whatever works for you in step 7h below.): 

py .\esptool.py --chip esp32 --port COM4 --baud 921600 
--before default_reset --after hard_reset write_flash 
-z --flash_mode dio --flash_freq 80m --flash_size 
detect 0xe000 boot_app0.bin 0x1000 
bootloader_dio_80m.bin 0x10000 firmware.bin 0x8000 
partitions.bin 
pause 

 
f. Change COM4 to the COM port that comes up in Device Manager for your Ringo when you 

plug its USB cable into your computer (that COM port will usually be called Silicon Labs 
CP210x USB to UART Bridge. 

 
g. Rename flash.txt to flash.bat. 

 
h. To flash your Ringo, plug its USB cable into your computer and launch flash.bat. A DOS box 

will open and list the progress of the flash. If the flash fails to connect to your Ringo, make sure 
you’ve specified the correct COM port in flash.bat. If it continues to fail, your computer’s USB 
port may not supply enough voltage/current to do the flash operation; in this case, use a 
powered USB hub between your computer and the Ringo. If the DOS box won't even run 
python, see 7e above for possible variations in the batch file command to fix this. 

 
i. That’s it, you’re done. The Ringo will reboot running the custom firmware. 

 
 
 


